文章编号:0258-7025(2002)01-0043-04

等离子体再辐射对紫外激光-靶耦合 效率的影响

张建泉,刘峰,强希文,陈荣华

(西北核技术研究所 陕西 西安 710024)

提要 在对激光产生的等离子体做等温膨胀的假定下,应用解析方法研究了紫外强激光脉冲辐照金属靶材时,计 及等离子体再辐射对激光-靶材耦合效应的影响。其结果与有关实验数据相一致,合理地解释了实验结果。 关键词 紫外强激光脉冲,激光等离子体,辐射耦合增强效应,辐射转换效率 中图分类号 0.53 文献标识码 A

Plasma Re-radiation Effects on Coupling Efficiency of UV Laser-targets

ZHANG Jian-quan , LIU Feng , QIANG Xi-wen , CHEN Rong-hua

(Northwest Institute of Nuclear Technology, Xi 'an 710024)

Abstract In the hypothesis of plasma isothermal expanding, enhanced effect of radiation coupling induced by laser-generated plasma on aluminum target is studied analytically. The calculation results have demonstrated the significance of plasma re-radiation in interaction of powerful pulsed laser with metal target. These results agreed with experimental data well, and explained the experimental results theoretically.

Key words pulsed UV laser , laser-generated plasma , enhanced effect of radiation coupling , radiation conversion efficiency

1 引 言

研究强激光脉冲辐照靶材表面时产生高温、高 压等离子体层的过程以及该等离子体层的辐射特 性,对于了解激光-靶材作用机理以及激光聚变和激 光武器效应,具有十分重要的意义。从而成为国内 外激光技术和激光效应研究的热点之一。

紫外强激光脉冲产生的等离子体层,在吸收入 射激光的同时,会发出相当强的波长从紫外到 X 光 的再辐射,等离子体层具有"光子转换器"的作用。 再辐射出的更短波长的次级辐射,与靶材表面有着 更为有效的强耦合,因此,在激光效应研究中,等离 子体再辐射是一个相当重要的问题¹²¹。

在靶材稳态气化、等离子体等温膨胀和激光逆 轫致吸收的单流体、双温度假定下,我们应用解析方 法,推导了不考虑等离子体再辐射时,等离子体特征 参量与激光参数、靶材物质参数间的定标关系^[3]。 本文推广了上述模型,在能量平衡方程中引入等离 子体再辐射系数,它是激光参数、等离子体特征参数 的函数。通过迭代计算,得到计及等离子体再辐射 后的等离子体参数、辐射转换效率,及其对靶材烧蚀 质量和烧蚀压力的影响。该物理模型给出的计算数 据与国外相关文献的结果相一致。

2 物理模型

2.1 等离子体参数

在强激光脉冲的辐照下,假定靶材的气化是瞬时而稳态的过程,同时气化等离子体中电子和离子 具有相同的膨胀飞散速度和不同的温度,等离子体 对激光的吸收主要来自电子的逆轫致吸收。从而, 我们在文献3]中给出了激光等离子体温度、密度、

收稿日期 2000-09-08;收到修改稿日期 2000-12-18

作者简介 张建泉(1942.10—) 男 陕西省泾阳县人。现任西北核技术研究所研究员。主要从事辐射物理和激光物理的 理论研究。E-mail zhou@nint.ac.cn 质量烧蚀速率、烧蚀压力和飞散速度。如果在这些 方程的推导过程中,在能量平衡方程中用(1 – α)/ 取代激光强度/则可得如下解析形式

$$T_e = 2.76 \times 10^4 \frac{M^{\frac{1}{8}} \tau^{\frac{1}{4}} Z^{\frac{3}{4}}}{(Z+f)^{\frac{5}{8}}} \sqrt{(1-\alpha)\hbar} \quad [\degree K] \quad (1)$$

$$\rho = 8.71 \times 10^{-13} \frac{M^{\frac{21}{16}} (1 - \alpha)^{\frac{1}{4}} I^{\frac{1}{4}}}{\lambda^{\frac{3}{4}} \tau^{\frac{3}{8}} Z^{\frac{9}{8}} (Z + f)^{\frac{9}{6}}} \quad [g/cm^{3}] \quad (2)$$

$$m_{\nu} = 1.46 \times 10^{-6} \frac{M^{\frac{7}{8}} \tau^{\frac{3}{4}} \sqrt{(1-\alpha)I}}{Z^{\frac{3}{4}} (Z+f)^{\frac{3}{8}} \lambda^{\frac{1}{2}}} \quad [g/cm^{2}] \quad (3)$$

$$P_{a} = 4.3 \frac{M_{16}^{2}(1-\alpha)^{\frac{3}{4}}I^{\frac{3}{4}}}{\lambda^{\frac{1}{4}}\tau^{\frac{1}{8}}Z^{\frac{3}{8}}(Z+f)^{\frac{3}{6}}} \quad [dyne/cm^{2}] \quad (4)$$

$$V = 1.52 \times 10^6 \sqrt[4]{(1 - \alpha) l \lambda \tau} \frac{Z_8^3 (Z + f)_6^3}{M_{16}^7} \ [\text{ cm/s}]$$

其中 α 为考虑等离子体再辐射后对耦合效应的修正 因子 ,它与等离子体温度、密度等特征参量有关 ,需 要进行迭代计算 ;上面各式中的相关参量及其单位 与文献 3]相同。

2.2 等离子体的辐射与自吸收

短脉冲强激光在固体表面产生的等离子体,通常处于高温(几十到几百电子伏特)、高压(GPa~ TPa)状态,近似为一光学厚的等离子体薄层。等离 子体的辐射发射和吸收满足基尔霍夫定律,即

$$j_{\nu} = K_{\nu}' B_{\nu p} \tag{6}$$

其中 j_{ν} 为单位时间、单位体积在频率 ν 附近单位频 率区间沿辐射方向的单位立体角内的辐射能 ; K_{ν} ' = K_{ν} [1 - exp(- $h\nu/KT$)],为考虑受激辐射后的辐 射吸收系数 ; B_{ν} 为 Planck 黑体辐射强度

$$B_{\nu p} = \frac{2h\nu^{3}}{c^{2} \exp(h\nu/KT) - 1}$$
 (7)

假定等离子体层厚度为 *d* ,那么 ,沿 Ω 方向单 位立体角内的辐射强度为

$$B_{\nu}(\Omega) = \int_{0}^{d/\cos\theta} j_{\nu}(s) \exp\left[-\int_{0}^{s} K_{\nu}'(s') ds'\right] ds \quad (8)$$

$$B_{\nu}(\theta) = \int_{0}^{d/\cos\theta} B_{\nu\rho} K_{\nu}' \exp(-K_{\nu}s) ds =$$
$$B_{\nu\rho} [1 - \exp(-K_{\nu}'d/\cos\theta)],$$
$$(0 \le \theta \le \pi/2)$$
(9)

对立体角积分 给出等离子体层一侧沿法线 n 方向

的辐射能流为

 $F_{\nu\rho}(n) = \pi B_{\nu\rho}[1 - 2E_3(K_{\nu}'d)]$ (10) 这里, E_3 为指数函数积分, 即

$$E_{3}(K_{\nu}'d) = \int_{0}^{1} y \exp(-K_{\nu}'d/y) dy \qquad (11)$$

(10)式给出的辐射能流是频率相关的,通常根据需要对频率分群,从而给出辐射能流的群分布。辐射能流入射到靶材表面,会发生反射。Δν_i频率区间的平均反射系数为

$$R_{\Delta\nu} = \frac{\int_{\Delta\nu_i} R_{\nu} B_{\nu p} \,\mathrm{d}\nu}{\int_{\Delta\nu_i} B_{\nu p} \,\mathrm{d}\nu}$$
(12)

如果更仔细地把等离子体层分为具有不同温度的 *M* 层,各层具有不同的辐射吸收系数,此时(10)式改写为较复杂的形式

$$F_{\nu p} = \pi B_{\nu p}^{(1)} \left[1 - 2E_{3} \left(K_{\nu}^{(1)} d^{(1)} \right) \right] + 2\pi \sum_{i=2}^{M} B_{\nu p}^{(i)} \left[E_{3} \left(\sum_{j=1}^{i-1} K_{\nu}^{(j)} d^{(j)} \right) - E_{2} \left(\sum_{j=1}^{i} K_{\nu}^{(j)} d^{(j)} \right) \right]$$
(13)

由于短脉冲激光产生的等离子体层很薄,因此,可以把等离子体简化处理为一光学厚度均匀的 薄层。同时,由于再辐射以紫外以至X射线为主,则 靶面反射系数 R 可以忽略不计。这样,进入靶内的 辐射能流来自入射激光本身和等离子体的再辐射, 即

$$F = I + F_p \tag{14}$$

其中 $I = I_0 \exp\left(-\int_0^d K' \, dx\right), F_p = \int_0^\infty F_{\nu p} \, d\nu$ (15) 其中 K' 为计及等离子体再辐射时的平均吸收系

其中, K'为计及等离于体再辐射时的平均吸收系数。最后相应的耦合效率可以表示为

$$\gamma = \frac{\int_{0}^{0} F dt}{\int_{0}^{t} I_{0} dt}$$
(16)

3 计算结果与讨论

按照上述物理模型,假定等离子体为一均匀的 光学厚层,其辐射能谱为黑体谱,计算了准直脉冲紫 外激光辐照铝靶时,气化等离子体形成和耦合系数 随激光参数的变化情况。图1给出等离子体厚度一 定时,铝等离子体发射的辐射能流随等离子体温度、 密度的变化情况。可以看出,随着等离子体温度的 升高和密度的增加,辐射能流越来越大,但总低于黑

体辐射。曲线上的凹处是辐射吸收系数改变的结

果。可以想象 随着温度的升高 ,再辐射光子能量增 大 ,其穿透能力也越强 ,因此 ,对靶的烧蚀越加明显。

表1给出激光强度分别为 10¹² W/cm² 和 10¹³ W/cm² 波长分别为 0.248 µm 和 0.35 µm, 计及再辐射效应时, 等离子体的温度、密度、烧蚀压力及辐射能流的大小。表中数据表明, 随着激光强度的增加, 等离子体温度升高, 但密度变化不是太大, 然而烧蚀压力和辐射能流明显增加。

图 2 给出入射激光强度为 10^{13} W/cm²,波长为 0.35 μ m 时,铝等离子体的辐射转换效率随激光脉 冲持续时间的变化关系。并与文献 4 实验结果进 行了比较。当激光脉冲持续时间 τ 分别为 1.5 ns 和 3 ns 时,我们计算得出的辐射转换效率相应为 27.5%和 32.9%,文献[4]给出的实验结果分别为 27.1%和 30.7%。二者比较一致。

表1	等离子体参数、辐射能流与激光参数的关系	

Table 1	Relationship of plasma	parameters and	radiation energy	flux with	laser parameters
---------	------------------------	----------------	------------------	-----------	------------------

Ι	τ	$\lambda = 0.248 \ \mu m$			$\lambda = 0.35 \ \mu m$				
$/W \cdot cm^{-2}$	/ns	$T_e/\times 10^6~{\rm K}$	$\rho / g \cdot cm^{-3}$	P_a /Pa	$F/W \cdot cm^{-2}$	$T_e/\times 10^6~{\rm K}$	$\rho / \text{g} \cdot \text{cm}^{-3}$	P_a /Pa	$F/W \cdot cm^{-2}$
10 ¹²	0.25	0.97	1.3×10^{-2}	9.5×10^{10}	1.1×10^{11}	1.18	9.6×10^{-3}	8.9×10^{10}	7.0×10^{10}
	0.50	1.14	9.5×10^{-3}	8.5×10^{10}	1.3×10^{11}	1.39	7.2×10^{-3}	8.0×10^{10}	1.4×10^{11}
	0.75	1.25	7.9×10^{-3}	7.9×10^{10}	1.8×10^{11}	1.51	6.0×10^{-3}	7.3×10^{10}	1.9×10^{11}
	1.00	1.29	6.9×10^{-3}	7.1×10^{10}	2.1×10^{11}	1.54	5.2×10^{-3}	6.5×10^{10}	2.0×10^{11}
	1.25	1.33	6.3×10^{-3}	6.7×10^{10}	2.4×10^{11}	1.65	4.7×10^{-3}	6.3×10^{10}	2.5×10^{11}
	1.50	1.37	5.8×10^{-3}	6.4×10^{10}	2.6×10^{11}	1.69	4.4×10^{-3}	6.0×10^{10}	2.7×10^{11}
	1.75	1.44	5.4×10^{-3}	6.3×10^{10}	3.0×10^{11}	1.74	4.1×10^{-3}	5.8×10^{10}	3.0×10^{11}
	2.00	1.46	5.0×10^{-3}	5.9×10^{10}	3.2×10^{11}	1.77	3.8×10^{-3}	5.6×10^{10}	3.1×10^{11}
	0.25	3.09	1.8×10^{-2}	5.0×10^{11}	1.4×10^{12}	3.67	1.4×10^{-2}	4.5×10^{11}	1.0×10^{12}
	0.50	3.60	1.3×10^{-2}	4.3×10^{11}	1.9×10^{12}	4.33	1.0×10^{-2}	4.0×10^{11}	1.4×10^{12}
	0.75	3.76	1.1×10^{-2}	3.8×10^{11}	2.2×10^{12}	4.72	8.6×10^{-3}	3.7×10^{11}	1.5×10^{12}
10 ¹³	1.00	4.07	1.0×10^{-2}	3.6×10^{11}	2.6×10^{12}	5.03	7.6×10^{-3}	3.5×10^{11}	1.8×10^{12}
	1.25	4.09	8.9×10^{-3}	3.3×10^{11}	2.7×10^{12}	5.07	6.8×10^{-3}	3.2×10^{11}	2.0×10^{12}
	1.50	4.20	8.2×10^{-3}	3.2×10^{11}	2.8×10^{12}	5.35	6.5×10^{-3}	3.1×10^{11}	2.1×10^{12}
	1.75	4.42	7.7×10^{-3}	3.1×10^{11}	2.9×10^{12}	5.54	6.2×10^{-3}	3.0×10^{11}	2.2×10^{12}
	2.00	4.52	7.3×10^{-3}	3.0×10^{11}	3.0×10^{12}	5.64	5.6×10^{-3}	2.9×10^{11}	2.3×10^{12}

图 3 给出激光强度 3.16×10^{12} W/cm²,波长 0.248 μ m 时 絕面烧蚀质量随激光持续时间的变化 关系。由图可以看出 ,当辐射系数 $\alpha = 0$ (图中虚 线)时 ,我们的计算结果与文献 5]一致 ;当辐射系 数 $\alpha > 0$ (图中实线)时 ,我们计算的烧蚀质量比文 献 5 /值略为偏大 ,这可能是由于对黑体辐射谱的假 定造成的 ,这里近似地忽略了靶面对各种波长辐射 的反射。

图 4 给出不计等离子体再辐射时,波长为 0.248

μm 脉冲持续时间 1 ns 的激光辐照 ,铝靶表面烧蚀 速率随激光强度的变化的计算结果与文献 5]的比 较。

图 5 给出再辐射计及与否时,因等离子体膨胀 飞散而施于靶面的烧蚀压力随激光脉冲持续时间的 变化关系。图中实线和虚线分别代表是否考虑等离 子体再辐射的计算结果。显然,再辐射导致烧蚀压 力有所降低,这与文献 5 的结论相一致。

值得指出的是,R. Popil⁶]对强度(2.5~8)×

 10^{12} W/cm²,波长 0.248 μm,脉冲持续时间 1.8 ns 的 激光辐照铝靶时 测量了光子能量大于 100 eV 的光 的转换效率约为 21%,且在该强度范围,转换效率 随激光强度的增加而略有增大。R. Marchand⁵⁵对 强度 10¹² ~ 10¹³ W/cm²,波长 0.248 μm,脉冲持续时 间 1.8 ns 的激光辐照铝靶,得到随激光强度的增加,

图 2 辐射转换效率与激光脉宽的关系

Fig.2 Radiation conversion efficiency vs laser pulse duration

图 4 烧蚀速率与激光强度的关系

Fig.4 Ablation rate vs laser intensity $\lambda = 0.248 \ \mu m$, $\tau = 1 \ ns$

参考文献

- V. H. Shui. Effect of vapor plasma on the coupling of laser radiation with aluminum [J]. J. Quantitative Spectroscopy Kadiative Transfer , 1978 , 20 627 ~ 636
- 2 Dong Yanbing, Wang Fuheng. An approximate method for 1-D radiative transfer problem [J]. *High Power Laser and Particle Beams*(强激光与粒子束), 1992, 4(3):424~430 (in Chinese)
- 3 Zhang Jianquan. Analytic research of laser-generated plasma parameters [J]. Chinese J. Lasers (中国激光), 1995, B4

辐射转换效率从 33%逐渐下降到 20%,他分析其原 因是:一方面在数值模拟中忽略了侧向能量输运,另 一方面实验测量中未包含等离子体辐射的全部光谱 区域。D. Dustor^[4]指出,辐射转换效率随波长增加 而下降。我们的计算结果与 R. Popil 和 D. Duston 的结论是一致的。

图 5 烧蚀压力与激光脉宽的关系

Fig. 5 Ablation pressure vs laser pulse duration $I = 10^{13} \text{ W/cm}^2, \lambda = 0.248 \ \mu\text{m}$

(4) 323 ~ 328 (in English)

- 4 D. Duston, R. W. Clark, J. Davis. Effects of radiation on spectra, gradients and preheat in laser-produced plasmas [J]. *Phys. Rev. A*, 1985, **31**(5) 3220 ~ 3230
- 5 R. Marchand, R. Fedosejevs, C. E. Capjack. Simulation of laser-plasma interactions with atomic and radiation effects [J]. *Laser and Particle Beams*, 1988, (4) part 2):183 ~ 197
- 6 R. Popil, P. D. Gupta, R. Fedosejevs *et al.*. Measurement of KrF-laser-plasma x-ray radiation from targets with various atomic numbers [J]. *Phys. Rev. A*, 1987, **35**(9) 3874 ~ 3882

4